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ABSTRACT 
Electronic measurement of shock phenomena is becoming more and more commonplace. 
This article reviews some basic concepts in shock measurement and analysis, and attempts 
to define suitable criteria for the accurate measurement and recording of shock waveforms. 

SOMMAIRE 
La mesure electronique des phenomenes de choc devient de jour en jour plus courante et 
prend dans le domaine de la recherche une place toujours plus importante. Cet article 
rappelle quelques idees fondamentales de la conception de mesures et d'analyse de choc. 
II tente a definir quelques criteres utiles pour la mesure precise et I'enregistrement de la 
forme d'onde. 

ZUSAMMENFASSUNG 
Die elektronische Messung von StoBvorgangen wird immer mehr zu einer alltaglichen An-
gelegenheit. Dieser Artikel beleuchtet einige Grundprinzipien der StoBmessung und -Analyse 
und versucht, geeignete Kriterien fur die genaue Messung und Aufzeichung der Kurvenfor-
men von stossen zu definieren. 

Introduction 
Shock phenomena are encountered relatively often in measurement engineer­
ing. They originate from explosions, impacts, earthquakes, supersonic motion 
and other spasmodic releases of energy. It is a little difficult to define exactly 
what a shock is, since any type of motion which is not purely periodic, may 
be thought of as a shock motion, but the following definition is adequate for 
the present purposes: 

A shock is a transmission of (kinetic) energy to a system, which takes place 
in a relatively short time compared with the natural period of the system, and 
which is followed by a natural decay of the (oscillatory) motion given to the 
system. 
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Fig. 1. Response of simple oscillator to a shock input. 

A square wave may therefore constitute one or two shocks, depending upon 
the natural period of the system influenced by it. Fig. 1 illustrates this. The 
input may be the motion of the base of a spring mass system as shown in 
Fig. 1a, and the output may be the motion of the mass. In case I the natural 
period of the system is short compared with the length of the input pulse and 
the system therefore experiences two shocks (two step functions, one in each 
direction) with subsequent decay of the motion. In case II the natural period 
is much longer than the pulse width and the resulting motion is that of a 
single shock. (Impulse excitation). 
The recording and measurement of shock waveforms or transients impose 
rather stringent requirements upon the instrumentation employed. 
It is the purpose of this article to call attention to these requiremens and to 
review the most common methods used for measuring and describing shock 
waveforms. Mechanical shock is referred to throughout but the results obtained 
apply equally well to other shock phenomena. 

Description of a Shock 
A shock may be measured in terms of acceleration, velocity or displacement 
and for a complete description it is necessary to give an exact amplitude 
versus time history of the quantity in question. 
In many cases the ultimate goal is not the waveform itself, but rather the effect 
that the corresponding shock would have on a certain mechanical system. Some 
sort of waveform analysis is then required, in much the same way as a power 
spectrum is used to describe continuous waveforms. Such information is help­
ful in the design of equipment which is to be subjected to shock environments, 
either in service or in production and transport stages. 
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Fourier Spectrum 
One method of description often used is the counterpart of the frequency 
spectrum in continuous waveform analysis. It is called the Fourier Spectrum 
of the shock wave. Such a spectrum gives the distribution of energy contained 
in the shock wave over the frequency range zero to infinity (or from minus 
infinity to plus infinity). 
The mathematical derivation of the Fourier spectrum is found in many text­
books and in the Appendix to this article. Different authors give slightly 
different expressions depending upon whether they use co or f as a variable 
and whether they consider frequencies from 0 to oo or from - oo to + oo. The 
differences are of course only formal. 
The matematical expression for the Fourier spectrum is 

F(f) = \ F(t) e",2rft dt 

where F(t) is the amplitude time history of the shock wave and f is the fre­
quency under consideration. 
Solving this for a single rectangular pulse of amplitude A and length T gives 
the following expression 

f»T/2 
F(f) = \ A e-j2Bft dt 

) — T/2 

or 

: sin n f t 
F(f) = A T — 

?rf t 

Similar calculation for a final peak sawtooth pulse gives 

F(f) = - — | / 1 - ^ s i n 2 * r f T + P r = sin *r f t ) 
2 JZIT y ?r f T \7z1J / 

and for a half sine pulse 

2 A T c o s ^ f T 

These functions are plotted in Figs. 2, 3 and 4 for the frequency range 
0 ^ f ^ 3/T. 
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Fig. 2. Frequency spectrum of rectangular pulse. 
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Fig. 3. Frequency spectrum of final peak sawtooth pulse. 
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Fig. 4. Frequency spectrum of half sine pulse. 
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It is seen from these plots that in general a shock pulse contains energy in 
all frequency bands from zero to infinite frequency. It is also seen that the 
spectra are continuous, with no discrete frequency components. 
In the expressions for F(f) above, all the expressions within the parallel 
brackets approach unity as f goes to zero, so that at low frequencies the 
spectrum is equal to the area (amplitude-time integral) of the shock pulse, 
irrespective of the pulse shape. This fundamental relationship is of consider­
able practical importance, for example in shock testing. It means that as long 
as the shock pulse is short compared with the periodic time of the mechanical 
system on which it acts, the severity of the shock is determined by the area 
of the shock pulse alone. 

Shock Spectra (Maximum Response Spectra) 
Another useful concept in the description of shock pulses is the shock spec-

■ ■jj 

trum. This is obtained by letting the pulse waveform in question be applied to 
a linear single-degree of freedom system and to find the response of this 
system as a function of time. If we have a whole series of such single-degree 
of freedom systems tuned to different resonance frequencies, we can plot for 
example the absolute maximum response of these as a function of natural 
frequency. The resulting plot constitutes a shock spectrum. 
Various types of shock spectra are used, depending upon application of the 
information obtained. These may be the initial shock spectrum which is 
obtained from the maximum response while the shock pulse is acting, and 
the residual shock spectrum which is obtained from the maximum response 
after the pulse has occurred. 
Other definitions may be the absolute maximum or maximax shock spectrum 
which is plotted on the basis of the maximum response without regard to 
time, and the absolute negative maximum shock spectrum which is obtained 
by considering the maximum response of the single-degree of freedom system 
in the negative direction. Other definitions may be thought of or invented if 
required. 
The amount of damping in the single-degree of freedom system is usually 
taken to be zero, but for special applications definite damping factors may 
be employed. Thus there is an infinite number of possible shock spectra for 
any shock pulse. For relatively small amounts of damping the shock spectra 
will not be essentially different from the spectra obtained with no damping, 
since the response for the first few cycles will be virtually identical. Unless 
otherwise specified, zero damping will be assumed. 
The input quantity used is immaterial, if the same quantity is used for the 
output quantity. Thus only the waveform is important, and the function used 
may represent acceleration, velocity or displacement, whatever is convenient. 
It should be noted that the shock spectrum does not depend upon the size of 
the spring-mass system but only upon the resonance frequency. 
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For certain applications it may be required to investigate the response of a 
resonance system mounted on another resonance system subjected to a shock 
waveform. If a shock spectrum is calculated or measured for such a con­
figuration it is called a secondary shock spectrum. It depends not only upon 
the resonance frequencies of the two single-degree of freedom systems, but 
also upon their relative physical sizes. 
Still higher order spectra may be used but are not often seen in practice. In 
fact primary order spectra are nearly always used, and a shock spectrum is 
usually taken to mean a primary shock spectrum. 
The essential difference between the Fourier spectrum and the shock spec­
trum is that the Fourier spectrum describes a waveform, whereas the shock 
spectrum describes the response of a certain physical system to a waveform. 
Both are very useful concepts and both may be used for such as: 

Fig. 5. Time response of simple oscillators to a rectangular shock pulse. 
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Fig. 6. Time response of simple oscillators to a final peak sawtooth pulse. 

Fig. 7. Time response of simple oscillators to a half sine pulse. 9 



1. Comparing shock severity 
2. Selection of shock isolators 
3. Shock test specifications 
4. A general design tool 

The response of a single-degree of freedom system to a shock pulse can be 
calculated relatively easily for simple waveforms, using for example Laplace 
transforms. 

9 1 
The time response of two systems of natural frequencies f = — and f = —— 

8T 4T 
to a rectangular, a sawtooth and a half-sine shock pulse of duration T and 
peak amplitude A is calculated and shown in Fig. 5, 6 and 7. The points 
marked X are points on the initial shock spectra and the points marked O 
are points on the residual shock spectra. 
Figs. 8, 9 and 10 give the complete shock spectra for these waveforms. The 
maximas shock spectra are found by taking the highest of the two spectrum 
values at any frequency. 

Fig. 8. Shock spectra for rectangular pulse. 
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Fig. 9. Shock spectra for final peak sawtooth pulse. 

Fig. 10. Shock spectra for half sine pulse. It is found that the Fourier spectrum and the undamped residual shock spec­trum of a pulse are simply related by the formula S(f) = 2 n f /F(f)/ where S(f) is the residual shock spectrum and /F(f)/ is the absolute value of the Fourier spectrum. See Appendix. For other types of shock spectra, such as for example the initial shock spectrum, no such simple relationship exists. 11 ■ 
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Measurements 
It is possible to measure shock spectra directly with the so-called vibrating 
reed gauges. A reed gauge consists of a whole series of reeds tuned to 
different resonance frequencies. The displacement of these reeds when the 
instrument is subjected to a certain shock wave can be measured directly. 
See for example "The Measurement of Acceleration Pulses with the Multifre-
quency Reed Gauge" by H. Shapiro and D. E. Hudson, Journal of Applied 
Mechanics, September 1953. 
The reed gauge gives a displacement shock spectrum. Acceleration spectra 
may be obtained by fixing small accelerometers to the mass of the resonance 
systems as shown in Fig. 11. Of course it is not possible with a reed gauge to 
have zero damping, but if the quality factor (Q-value) of the resonances is 
kept high, there will be practically no difference for the first few cycles of 
movement. 

Fig. 11. Small accelerometer fixed to a vibrating reed resonator. 

The piezoelectric accelerometer is now used extensively for shock measure­
ments, for several reasons: 
1. Most vibration laboratories are equipped with piezoelectric accelerometers, 

and it is convenient to use the same equipment for both shock and vibra­
tion measurements. 

2. The accelerometer mass can be made very small, making measurements on 
lightweight structures possible. 

3. Piezoelectric accelerometers have a very wide frequency and dynamic 
range, which affords great accuracy in the measurements. 

4. With modern analog or digital computers the Fourier spectrum or response 
spectrum of a shock pulse may be obtained relatively quickly, once the 
waveform is accurately determined. 

Measuring System Requirements 
When shock pulses are measured, particular requirements have to be fulfilled 
in order that the output from the transducer and associated circuitry truly 
follows the amplitude-time history of the shock. 
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The Fourier spectra given in Figs. 2, 3 and 4 show that in order to give com­
plete information about a shock pulse, the measuring system must have a 
frequency range from zero (DC) to infinity. There will always be an error as­
sociated with a shock measurement when the measuring system does not have 
an infinitely wide frequency range. This error is purely systematic and comes 
in addition to other errors such as those resulting from calibration inaccuracy, 
system non-linearity etc. 
The required frequency range for a certain percentage error can be calculated 
for simple pulse shapes. It has been found that the rectangular pulse shape 
presents the most severe requirements to the measuring system. Any other 
pulse of the same length will be more accurately measured than the rect­
angular wave. 

Low Frequency Requirements 
It has been found that the piezoelectric accelerometer and the first stage of 
the subsequent electronic instrumentation (usually a preamplifier of some sort) 
can be represented by a current generator feeding a parallel combination of 
a resistor and a capacitor as shown in Fig. 12. The resistance is approximately 
equal to the preamplifier input resistance, and the capacitance is the combined 
shunt capacitance in the circuit, i.e. accelerometer, cable and preamplifier 
input capacitance in parallel. The current generated is dQ/dt, where Q is the 
charge induced on the piezoelectric surfaces. 

Fig. 12. Equivalent circuit of piezoelectric accelerometer and preamplifier input stage. 

The voltage across this system, which is the input voltage to the preamplifier, 
can be calculated for simple pulse shapes for example by using Laplace trans­
forms. Fig. 13 gives the general output waveshape for a rectangular input 
pulse. Due to insufficient low-frequency response (no DC response) the peak 
value cannot be held and at the end of the pulse the voltage has dropped an 
amount 1 -e"T/RC where T is the pulse duration. The undershoot just after the 
pulse has occurred is also equal to this value. 
If similar calculations are made for the half sine and the terminal peak saw­
tooth pulse, their general shapes will be as shown in Figs. 14 and 15. It is 
found that the reduction of the peak and the undershoot after the pulse has 
occurred are less pronounced with these waveforms. 
In order to reduce the error to 5 % for example, the factor e~TRC should be 
o.95 or larger for the rectangular pulse. This gives a value for T/RC of about 
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I 
Fig. 13. Preamplifier output voltage versus time for a rectangular acceleration input to 

accelerometer. 

Fig. 14. Preamplifier output voltage for terminal peak sawtooth pulse. 

■ 
Fig. 15. Preamplifier output voltage for half sine pulse. 
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o.05, i.e. the time constant, RC, of the measuring system should be twenty 
times the duration of the pulse. For the half-sine and final peak sawtooth 

Fig. 16. Error resulting from insufficient low frequency response for rectangular, final peak 
sawtooth and half sine pulse, referred to peak value of the input. 

Fig. 17. Correction to peak value for half sine pulse based on the ratio undershoot/ 
apparent peak. 
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pulses the RC time constant should be about twelve and nine times the dura­
tion of the pulse respectively, for the same error. 
Fig. 16 shows the value of the undershoot for these three pulse shapes as a 
function of T/RC. From this can be deduced that the error for any waveform 
is always smaller than the ratio T/RC. 
If the shock pulse does not have its maximum value at the beginning, i.e. for 
a half sine or a final peak sawtooth pulse, there will also be a reduction of 
the peak value of the output. For the final peak sawtooth pulse the reduction 
in peak value is equal to the undershoot, whereas for a sinusoidal pulse it is 
approximately equal to half the undershoot, for reasonably small undershoots. 
A complete correction curve is shown in Fig. 17. 

Fig. 18. Possible output waveshape for half sine input when the low frequency cut-off is not 
the simple 6 dB octave. 

Whenever the low frequency cut-off of the measuring system is determined by 
some factor other than the RC constant of the input circuit, for example by 
an amplifier cut-off, the analysis is not quite as simple as that indicated above. 
For a six dB per octave cut-off the error will be about the same as before if 

the factor RC is substituted by the expression where fc is the - 3 dB 
2 n f c 

cut-off frequency. For sharper cut-off rates, for example 12 dB per octave, an 
oscillatory motion may appear after the pulse in the output, as shown in 
Fig. 18. Fundamentally, however, the error is still due to insufficient low fre­
quency response, and can only be reduced by extending the frequency range 
of the instrumentation downwards. 

High Frequency Requirements 
Referring again to the Fourier spectrum of a rectangular pulse as shown in 
Fig. 2, it is seen that most of the energy of the pulse is contained in the 
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frequency band from zero to 1/T. In order to handle such a pulse therefore, 
the system must have an upper frequency limit of at least 1/T, i.e. 

f H ^ — o r f H T ^ 1 

where fH is the upper frequency limit and T is the pulse length. 
The relation fT >̂ 1 expresses a fundamental principle, similar to the "uncer­
tainty principle" in quantum mechanics, and is met with in all areas of trans­
mission theory. Its general form is A\ A\ ^> 1 where A\ is the bandwidth of a 
signal and At is its duration. 
Applied to a pulse it expresses the fact that the sharper the pulse is 
determined in time (i.e. the shorter the pulse) the more diffuse it will be in 
frequency and vice versa. In order for a pulse to have a single frequency 
(z l f ^O) it must have an infinite duration. Similarly, an infinitely narrow pulse 
(At-^0) has a flat frequency spectrum from zero to infinity. 
Not only the amplitude characteristic but also the phase characteristic of the 
measuring system must be flat up to at least 1/T in order to avoid distortion 
of the waveform. The phase characteristic of electronic amplifiers is usually 
reasonably flat up to about one tenth of the cut-off frequency, so that an upper 
frequency limit of 10/T is adequate for most applications. 

Response of Accelerometers to Shock Waveforms 
Piezoelectric accelerometers are usually lightly damped single-degree of free­
dom systems and their response to transient vibrations depends upon their 
resonance frequency and damping (Ref. 7). 

Fig. 19. Response of an undamped accelerometer to a half sine input of duration five times 
the natural period of the accelerometer. 

The response of an undamped accelerometer to a half sine pulse acceleration 
of duration five times the natural period of the accelerometer is shown in 
Fig. 19. It is seen that the mean value of the response follows the exciting 
waveform but there is an oscillatory signal superimposed, which is due to the 
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accelerometer resonance. This high frequency signal can be filtered out by 
a low pass filter, but it is necessary to take into account the phase character­
istic of the filter. No significant phaseshift must be introduced within the 
important frequency band of the pulse. 
In practice the phase shift of a low pass filter is usually negligible below one 
tenth of its 3 dB cut-off frequency. As seen before, the main information about 
a pulse is contained within the frequency range 0 to 1/T where T is the dura­
tion of the pulse, so that the filter cut-off frequency should be greater than 
10/T. This of course requires that the accelerometer resonance frequency is 
well above 10/T, depending upon the sharpness of the filter cut-off. See 
Fig. 20. 

Fig. 20. Use of low-pass filter to eliminate the effect of accelerometer resonance. 

Frequency Response of Total System 
From the foregoing discussion the following frequency response is required 
from a shock measuring system for a general pulse waveform: 
Low frequency requirements: 

RC > 20 T 
f < 0.008 
L = T 

High frequency requirements: 

f -> 1 0 f H > — 

These limits are calculated for a rectangular waveform with a maximum of 
5 % low-frequency error and a tolerable rounding of corners due to high fre-
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Fig. 21. Chart for finding required instrumentation frequency range when pulse length is 
known. 

quency limitation. For practical waveforms a narrower frequency range may 
be acceptable. In particular the low frequency limit can be made considerably 
higher, if one is aware of the reason for the undershoot at the end of the 
pulse. The high frequency limit is generally not difficult to achieve with modern 
instrumentation. 
Fig. 21 shows graphically the necessary frequency range for variable pulse 
length, (rectangular waveform) and Fig. 22 shows the results obtained in 
practice when measuring such a waveform using variable high and low fre­
quency limits. 
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Conclusion 
Complete information about mechanical shocks can only be obtained with a 
measuring system with a wide frequency range. The modern piezoelectric 
accelerometer with electronic instrumentation is very well suited for recording 
shock waveforms, and subsequent analysis may be carried out with analog or 
digital techniques. 
The frequency range of modern accelerometers and measuring electronics can 
be made wide enough to reduce to insignificance the errors associated with 
inadequate frequency response. 
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Appendix 
The Fourier Spectrum 
The spectrum of a transient wave is expressed by the Fourier integral. This 
is derived from the ordinary Fourier representation of periodic waves in the 
following way: 

Fig. A1. 

Assume a periodic wave f(t) of period T as shown in Fig. A1. This can be re­
presented by the Fourier series 

oo 

f(t) = 2 C„ ei2n*f°' 
n = — oo 

ST/2 
f(t) eHn2*fot dt 

-112 

and fo = — 
T 

Cn are called the frequency components of the wave and are spaced at equal 
intervals 1/T on the frequency scale. 

The whole expression for f(t) is 
oo r» T /2 

f(t) = 2 f0 e i n 2^ \f(t) eV'n^ot dt 
n = _ oo 1— T/2 

t ' 

Let us now increase the period of the wave such that T->oo. This makes f0 

vanishingly small. The components Cn are then spaced infinitesimally close 
to each other, so that a continuous function is generated. 
Let us denote nfc by a variable f and fQ by df. 
When these values are substituted into the expression for f(t) the sum turns 
into an integral and we obtain 
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f* oo f* oo 

f(t) = \ df e | M t \ f(t) e-i2"ft dt 
1 — oo I — CO 

(• oo 

or f(t) = \ F(f) ei2*ft df 

r* oo 
where F(f) - \ f(t) e^u dt 

1 OO 

The continuous function F(f) is called the Fourier spectrum of the function f(t) 
and the integral on the right is called the Fourier integral. 
For a rectangular pulse of amplitude A and duration T the spectrum is 

f T/2 
F(f) = \ A e"i2TCtt dt 

1— T/2 

A 
= — (e i7IfT-e_i7lfT) 

A T 
F(t) = - sin 7t 1 T 

u f T 

Similar calculation gives the Fourier spectra of the other pulse shapes con­
sidered in the main text. 

Shock Spectra 
The response of a single-degree of freedom system can be calculated relatively 
easily for simple waveforms, using Laplace transforms. Such a system is shown 
in Fig. A2. 
Letting the displacement of the base be X^t) and the displacement of the mass 
be X(t) we have 

d2X 
M = K (XT - X) 

dt2 

which, using the Laplace operator gives 
(Ms2 + K) X(s) = KXT (S) 

KX,(s) <Wo2X,(s) 
or X(s) =- = 

Ms2 + K s2 + co0
2 

where co0 = V K/M is 2 n times the natural resonance frequency of the single-
degree of freedom system. 
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Fig. A2. 

Single Rectangular Pulse 
The single rectangular pulse is the superposition of two step functions of 
equal amplitude A and opposite direction, applied with a time delay T, the 
length of the pulse. 

The response of the single-degree of freedom system to such a pulse is 

ooo A / 1 s \ 
X ( s ) = - , -2— = A — - VTT-H 

s H w o s \ s S2 + av / 

or X(t) - A (1 - cos wo t) 0 < t < T 

The response for t > T is obtained by subtracting a similar response delayed 
an amount T, i.e. 

X(t) = A (1 - cos a>o t) - A (1 - cos coo (t - T)) 

X(t) = A (cos co0 (t - T) - cos oj01) t > T 

The time response for a certain system is then as shown in Fig. A3. The 
amplitude A1 is a point on the residual shock spectrum. 
At t = T, A (1 - cos Q)0 T) = A1 sin co0 (T - T1) 1 
where T1 is the imaginary starting point of the free oscillation. 
Also the derivative of the response curve is smooth, i.e. 

A co sin coo T = A1 <x> cos co0 (T - T1) 
or A sin co0 T = A1 cos coG (T - T1) 2 
By combination of equations 1 and 2 we obtain 

A2 [(1 - cos co0 J)2 + sin2 coo T] = A12 

A1 = A V 2 ( 1 -~costOoT) 
A1 = 2 A sin co0 T/2 
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Fig. A3. 

Thus the residual shock spectrum for the rectangular pulse is 
S(f) =2As incoT /2 

when co is variable. 
r'u 

The initial shock spectrum is seen intuitively to be 
S(f) = A (1-cosco T) f <: 1/2T 
S(f) = 2 A f > 1/2 T 

Similar procedures give the shock spectra for the other waveforms considered 
in the main text. 

4 

Connection between Fourier Spectrum and Residual Shock Spectrum 
It can be demonstrated that there is a definite relationship between the Fourier 
Spectrum of a shock pulse and its Undamped Residual Shock Spectrum. Thus 

S(f) = 2*rf/F(f)/ 
where S(f) is the residual shock spectrum and F(f) is the Fourier spectrum. 

Fig. A4. 

Fig. A4 shows an arbitrary acceleration shock amplitude as a function of time. 
Assuming a linear resonance system, its response to such a shock can be 
calculated as the superposition of the responses to a number of step functions 
approximating the shock pulse. 
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The change in input velocity per step is 

Ay = a(r) Ax 
where a(r) is the value of the input acceleration at time r and At is the width 
of the step. 
The partial velocity response at some time t after the step has occurred is 

ZIVR = h ( t - r ) a(r) Ax 

where h ( t - r ) is the velocity response to a unit velocity step. The total 
response at a time t after the shock has occurred is then 

vR = -Th ( t - r ) a(t) Ax 
Letting the width of the steps Ax approach zero, the sum turns into an integral 

vR = \ h (t - r) a(r) dx 

Since the input occurs only during the time 0 to T nothing is changed by 
changing the limits of integration to - oo to oo, i.e. 

vR = \ h (t - T) a(r) dx 
9'- CO 

The velocity response of an undamped resonator to a unit velocity step is the 
same as the acceleration response to a unit acceleration step. Thus 

h (t - X) - 1 - COS 2 71 f (t - x) 

as may be seen from Fig. 5 on page 8. 
Thus we have 

vR = \ (1 - cos 2 n f (t - x) a(r)) dx 

= \ a(r) dx - \ a(r) cos 2 n f (t - x) dx 
f'— oo J - oo 

The first integral must be zero for a transient waveform so that 
(•oo 

vR = - \ a(x) cos 2 7i f (t - r) dx 
f 1— oo 

This is also an expression for the Fourier spectrum of the shock pulse, except 
for the minus sign. Thus 

vR = /F(f)/ 

and the maximum residual response acceleration is 
aR = 2jzi /F(f)/ 

which is what we set out to demonstrate. 
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Accelerometers 
A cross-section of a modern accelerometer is shown in Fig. A5. It consists of 
a piezoelectric element on which rests a heavy mass. The mass is preloaded 
by a stiff spring, and the whole assembly is mounted in a metal housing with 
a thick base. When the accelerometer is subjected to vibration, the mass will 
exert a variable force on the piezoelectric element. This force is exactly pro-

r \ . ' 

portional to the acceleration of the mass. Due to the piezoelectric effect, a 
variable charge will be developed across the piezoelectric element. This charge 
is proportional to the force and therefore to the acceleration of the mass. For 
frequencies much lower than the resonance frequency of the mass on the 
combined stiffness of the whole accelerometer system, the acceleration of 
the mass will be virtually the same as the acceleration of the whole transducer, 
and the charge produced will be proportional to the acceleration to which the 
transducer is subjected. This charge can be measured electronically at the 
output terminals and used for accurate determination of vibration amplitude, 
waveform and frequency. 
Relevant specifications for shock measurement for two different Bruel & Kjaer 
accelerometers are: 

Accelerometer Type 4333 4336 

Sensitivity, mV/g 14-20 4-6 

Mounted resonance, kHz 45 125 

Capacity with cable, pF 1000 300 

Resistance at 20°C, Mohm > 20ooo > 20ooo 

Max. shock, g 10ooo 14ooo 

Frequency range (1 dB), Hz o.5-15ooo o.5-40ooo 

Type of connection Side Side 

Weight, grams 13 2 
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Accelerometer Type 4333 4336 

Sensitivity, mV/g 14-20 4-6 

Mounted resonance, kHz 45 125 

Capacity with cable, pF 1000 300 

Resistance at 20°C, Mohm > 20ooo > 20ooo 

14ooo Max. shock, g 10ooo 

> 20ooo 

14ooo 

Frequency range (1 dB), Hz o.5-15ooo o.5-40ooo 

Type of connection Side Side 

2 Weight, grams 13 

Side 

2 



Brief Communications 

Recording of RPM-Changes due to Loading of AC Generators. 

Communicated from Ing. Elmar Dorner of Jenbacker Motoren-Werke, Tirol, 
Austria. 

Fig. 1. 

An interesting measuring arrangement for the automatic recording of changes 
in speed of rotation of AC generators can be made by means of the Bruel & 
Kjaer Frequency Analyzer Type 2107 and Level Recorder Type 2305, see Fig. 1. 
As can be seen the arrangement is very simple and contains, apart from the 
above mentioned instruments, only a simple voltage stabilization circuit con­
sisting of a transformer, a resistor and a Zener diode. The reason for including 
this stabilization arrangement will be clear from the discussion below. 
As the speed of rotation of the generator is directly proportional to the fre­
quency of the generator output voltage, the measurement consists basically in 
converting a change in frequency to a change in voltage, the voltage then 
being recorded automatically on the Level Recorder. To obtain the frequency-
to-voltage conversion the Analyzer Type 2107 should be switched to its "40 dB 
Octave Selectivity Condition" and the normal operating point chosen on the 
steepest slope of the filterskirt, see Fig. 2. Here the normal operating fre­
quency was 50 Hz and the Analyzer was tuned to 56 Hz. 
Due to the logarithmic recording range of the Type 2305 Level Recorder the 
rather nonlinear scale for the frequency-to-voltage conversion is, when re­
corded, approaching "linearity" (see Fig. 2). However, when the generator 
frequency changes due to a change in loading the generator output voltage 
also changes. This is a very undesirable feature from the above described 
measuring point of view, but can be easily compensated for by the use of the 
previously described voltage stabilization circuit, see also Fig. 3. The stabiliza­
tion circuit converts the original sinewave signal into a squarewave type signal 
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Frequency (Hz) ► 
466004 

Fig. 2. 

Fig. 3. 

with constant amplitude before it is applied to the Analyzer. Even though the 
squarewave contains a number of harmonics this is unimportant in the case 
considered as these harmonics are filtered out by the Analyzer itself. 
To calibrate the arrangement use should be made of a high quality frequency 
oscillator (and an electronic counter) and the voltage stabilizing arrangement 
should be kept in circuit. 
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